skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saltaformaggio, Brendan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art (SOTA) weight-shared SuperNets dynamically activate subnetworks at runtime, enabling robust adaptive inference under varying deployment conditions. However, we find that adversaries can take advantage of the unique training and inference paradigms of SuperNets to selectively implant backdoors that activate only within specific subnetworks, remaining dormant across billions of other subnetworks. We present VillainNet (VNET), a novel poisoning methodology that restricts backdoor activation to attacker-chosen subnetworks, tailored either to specific operational scenarios (e.g., specific vehicle speeds or weather conditions) or to specific subnetwork configurations. VNET's core innovation is a novel, distance-aware optimization process that leverages architectural and computational similarity metrics between subnetworks to ensure that backdoor activation does not occur across non-target subnetworks. This forces defenders to confront a dramatically expanded search space for backdoor detection. We show that across two SOTA SuperNets, trained on the CIFAR10 and GTSRB datasets, VNET can achieve attack success rates comparable to traditional poisoning approaches (approximately 99%), while significantly lowering the chances of attack detection, thereby stealthily hiding the attack. Consequently, defenders face increased computational burdens, requiring on average 66 (and up to 250 for highly targeted attacks) sampled subnetworks to detect the attack, implying a roughly 66-fold increase in compute cost required to test the SuperNet for backdoors. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  2. Free, publicly-accessible full text available February 25, 2026
  3. Web applications provide a wide array of utilities that are abused by malware as a replacement for traditional attacker-controlled servers. Thwarting these Web App-Engaged (WAE) malware requires rapid collaboration between incident responders and web app providers. Unfortunately, our research found that delays in this collaboration allow WAE malware to thrive. We developed Marsea, an automated malware analysis pipeline that studies WAE malware and enables rapid remediation. Given 10K malware samples, Marsea revealed 893 WAE malware in 97 families abusing 29 web apps. Our research uncovered a 226% increase in the number of WAE malware since 2020 and that malware authors are beginning to reduce their reliance on attacker-controlled servers. In fact, we found a 13.7% decrease in WAE malware relying on attacker-controlled servers. To date, we have used Marsea to collaborate with the web app providers to take down 50% of the malicious web app content. 
    more » « less
  4. null (Ed.)